

Chongqing University of ATA Advanced Technique of Artificial Intelligence

Artificial

mettigence

Multi-level Cross-view Contrastive Learning for Knowledge-aware Recommender System

Ding Zou^{1,6}, Wei Wei^{1,6 4}, Xian-Ling Mao², Ziyang Wang^{1,6}, Minghui Qiu³, Feida Zhu⁴, Xin Cao⁵ ¹ Cognitive Computing and Intelligent Information Processing (CCIIP) Laboratory, School of Computer Science and Technology, Huazhong University of Science and Technology, China ² School of Computer Science and Technology, Beijing Institute of Technology, China ³ Alibaba Group, China ⁴ Singapore Management University, Singapore ⁵ School of Computer Science and Engineering, The University of New South Wales, Australia ⁶Joint Laboratory of HUST and Pingan Property & Casualty Research (HPL), China ¹{m202173662, weiw, ziyang1997}@hust.edu.cn ² maoxl@bit.edu.cn ³ minghuiqiu@gmail.com 4fdzhu@smu.edu.sg 5 xin.cao@unsw.edu.au

https://github.com/CCIIPLab/MCCLK

Chongqing University of ATA Advanced Technique of Artificial Intelligence

Artificial

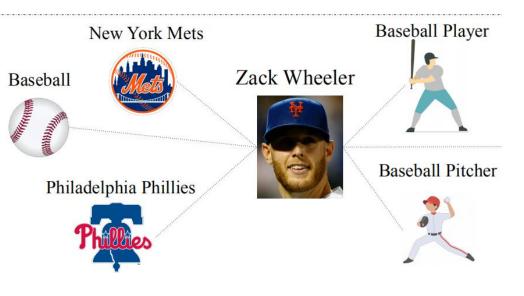
1.Introduction

2.Method

3.Experiments



Introduction



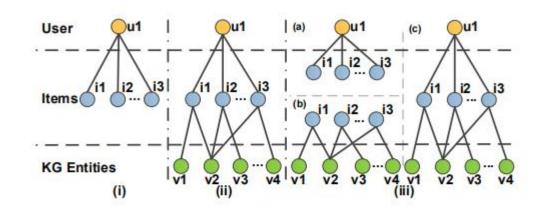


Figure 1: A toy example of our selected multi views. (i) Traditional CF-based recommendation learns from collaborative view. (ii) Previous KGR methods learn from the structural view. (iii) MCCLK learns from three selected views, including local-level collaborative view (a) and semantic view (b), global-level structural view (c).

- 1. Current GNN-based models greatly suffer from sparse supervision signal problem. leading to the indiscrimination of generated node representations.
- 2. Since previously models treat each item entity relation independently for learning. the learning process is incapable of distilling

Method

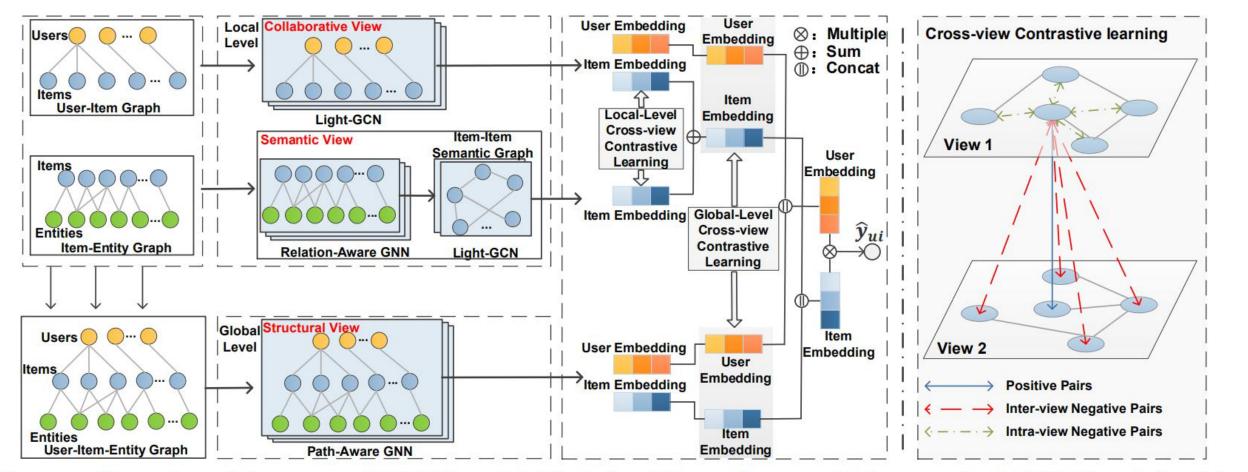


Figure 2: Illustration of the proposed MCCLK model. The left subfigure shows model framework of MCCLK; and the right subfigure presents the details of cross-view contrastive learning mechanism. Best viewed in color.

Method

Problem Definition

$$\mathcal{U} = \{u_1, u_2, \dots, u_M\}$$
 and $\mathcal{V} = \{v_1, v_2, \dots, v_N\}$

user-item interaction matrix $\mathbf{Y} \in \mathbf{R}^{M \times N}$

$$\mathcal{G} = \{(h, r, t) \mid h, t \in \mathcal{E}, r \in \mathcal{R}\}$$

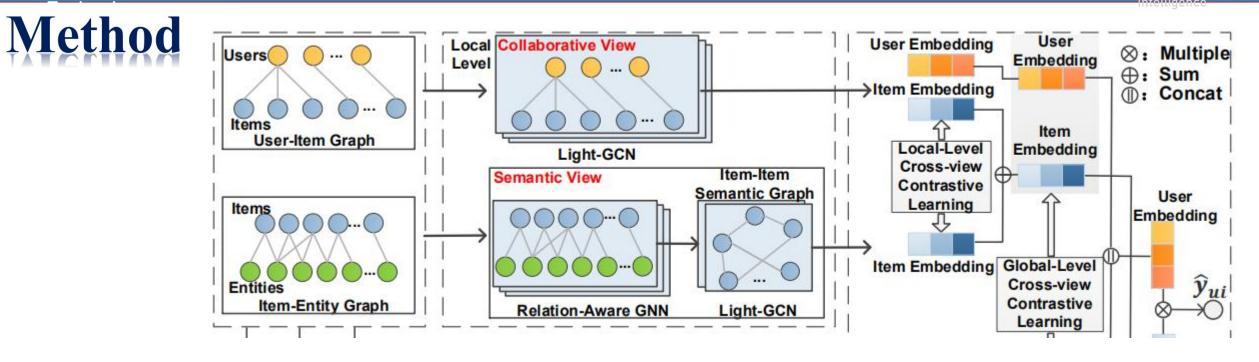
$$\mathbf{e}_{i}^{(k+1)} = \frac{1}{|\mathcal{N}_{i}|} \sum_{\substack{(r,v) \in \mathcal{N}_{i} \\ (r,v) \in \mathcal{N}_{i} }} \mathbf{e}_{r} \odot \mathbf{e}_{v}^{(k)},$$

$$\mathbf{e}_{v}^{(k+1)} = \frac{1}{|\mathcal{N}_{v}|} \left(\sum_{\substack{(r,v) \in \mathcal{N}_{v} \\ (r,v) \in \mathcal{N}_{v} }} \mathbf{e}_{r} \odot \mathbf{e}_{v}^{(k)} + \sum_{\substack{(r,i) \in \mathcal{N}_{v} \\ (r,i) \in \mathcal{N}_{v} }} \mathbf{e}_{r} \odot \mathbf{e}_{i}^{(k)} \right),$$

$$S_{ij} = \frac{\left(\mathbf{e}_{i}^{(K')}\right)^{\mathsf{T}} \mathbf{e}_{j}^{(K')}}{\left\| \mathbf{e}_{i}^{(K')} \right\|}.$$
(2)

$$\widehat{S}_{ij} = \begin{cases} S_{ij}, & S_{ij} \in \text{top-k}(S_i), \\ 0, & \text{otherwise,} \end{cases}$$
(3)

$$\widetilde{S} = (D)^{-\frac{1}{2}} \widehat{S} (D)^{-\frac{1}{2}},$$
(4)



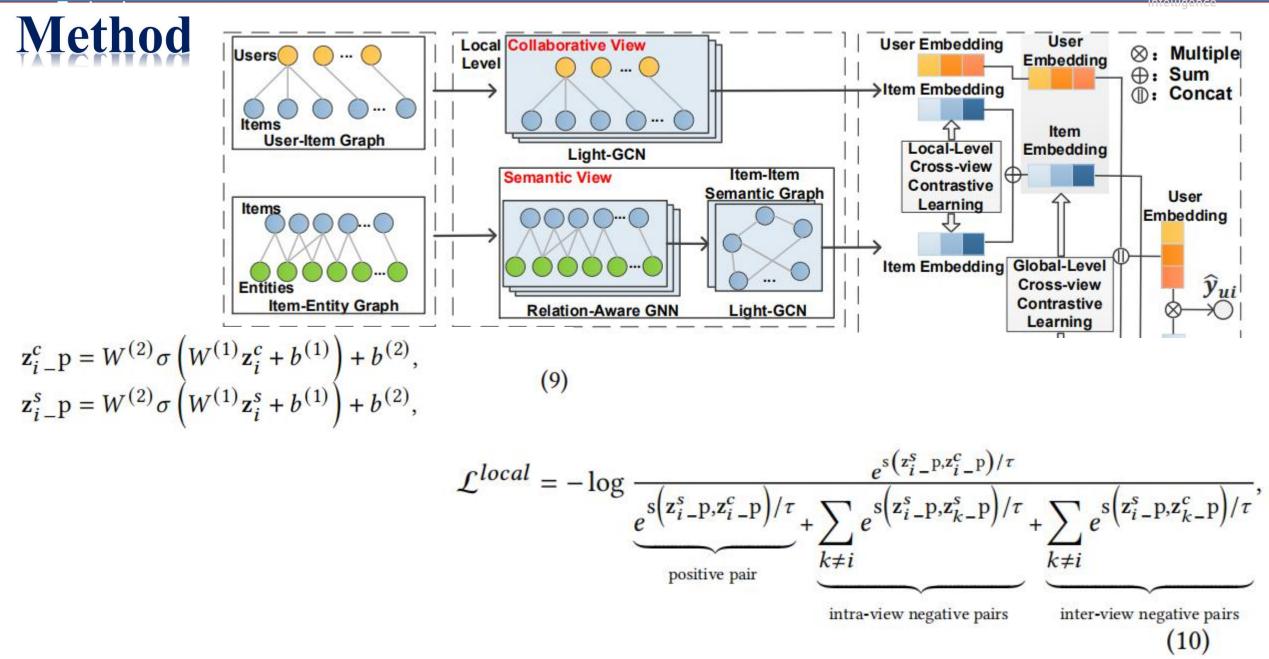
$$\mathbf{e}_{u}^{(k+1)} = \sum_{i \in \mathcal{N}_{u}} \frac{1}{\sqrt{|\mathcal{N}_{u}||\mathcal{N}_{i}|}} \mathbf{e}_{i}^{(k)},$$

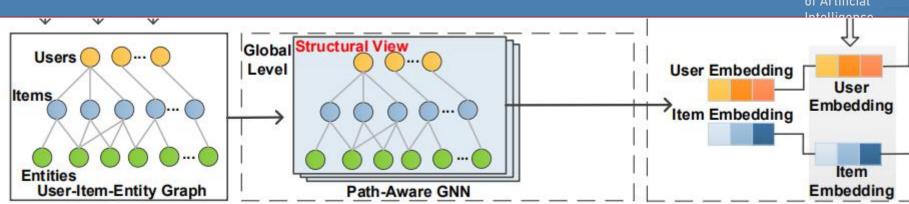
$$\mathbf{e}_{i}^{(k+1)} = \sum_{u \in \mathcal{N}_{i}} \frac{1}{\sqrt{|\mathcal{N}_{u}||\mathcal{N}_{i}|}} \mathbf{e}_{u}^{(k)},$$
(5)

$$\mathbf{z}_{u}^{c} = \mathbf{e}_{u}^{(0)} + \dots + \mathbf{e}_{u}^{(K)}, \quad \mathbf{z}_{i}^{c} = \mathbf{e}_{i}^{(0)} + \dots + \mathbf{e}_{i}^{(K)}.$$
 (6)

$$\mathbf{e}_{i}^{(l+1)} = \sum_{j \in \mathcal{N}(i)} \widetilde{S} \mathbf{e}_{j}^{(l)}, \tag{7}$$

$$\mathbf{z}_i^s = \mathbf{e}_i^{(0)} + \dots + \mathbf{e}_i^{(L)}.$$
 (8)





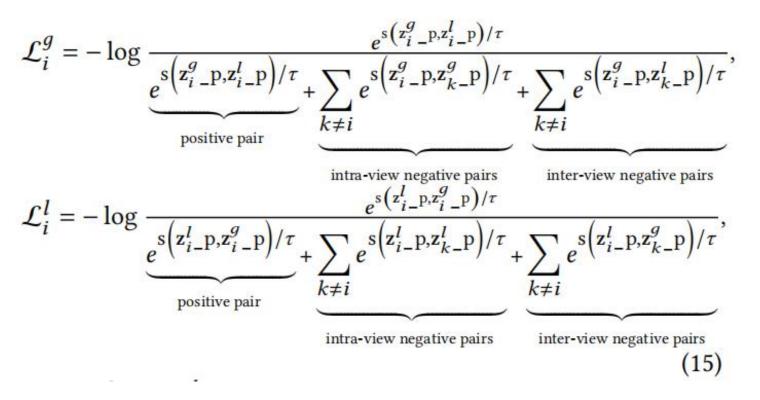
$$\mathbf{e}_{u}^{(l+1)} = \frac{1}{|\mathcal{N}_{u}|} \sum_{i \in \mathcal{N}_{u}} \mathbf{e}_{i}^{(l)},$$

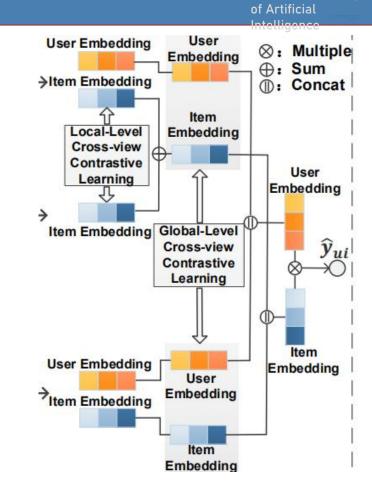
$$\mathbf{e}_{i}^{(l+1)} = \frac{1}{|\mathcal{N}_{i}|} \sum_{(r,v) \in \mathcal{N}_{i}} \beta(i,r,v) \mathbf{e}_{r} \odot \mathbf{e}_{v}^{(l)},$$
(11)

$$\beta(i, r, v) = \operatorname{softmax} \left((\mathbf{e}_i || \mathbf{e}_r)^T \cdot (\mathbf{e}_v || \mathbf{e}_r) \right)$$
$$= \frac{\exp \left((\mathbf{e}_i || \mathbf{e}_r)^T \cdot (\mathbf{e}_v || \mathbf{e}_r) \right)}{\sum_{(v', r) \in \hat{\mathbf{N}}(i)} \exp \left((\mathbf{e}_i || \mathbf{e}_r)^T \cdot (\mathbf{e}_{v'} || \mathbf{e}_r) \right)},$$
(12)

$$\mathbf{z}_{u}^{g} = \mathbf{e}_{u}^{(0)} + \dots + \mathbf{e}_{u}^{(L')}, \quad \mathbf{z}_{i}^{g} = \mathbf{e}_{i}^{(0)} + \dots + \mathbf{e}_{i}^{(L')}.$$
 (13)

Method

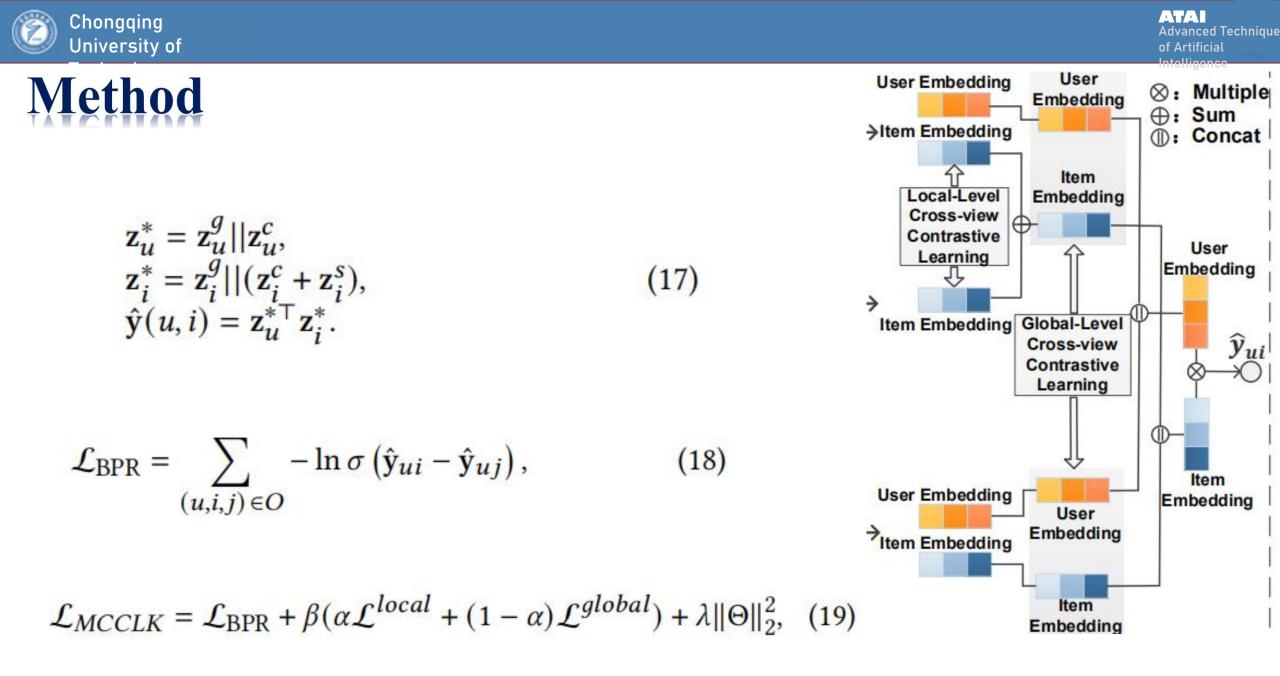




ATAI

Advanced Technique

$$\mathcal{L}^{global} = \frac{1}{2N} \sum_{i=1}^{N} (\mathcal{L}_{i}^{g} + \mathcal{L}_{i}^{l}) + \frac{1}{2M} \sum_{i=1}^{M} (\mathcal{L}_{u}^{g} + \mathcal{L}_{u}^{l}).$$
(16)



		Book-Crossing	MovieLens-1M	Last.FM
User-item	# users	17,860	6,036	1,872
Interaction	# items	14,967	2,445	3,846
Interaction	# interactions	139,746	753,772	42,346
Knowledge	# entities	77,903	182,011	9,366
Knowledge Graph	# relations	25	12	60
	# triplets	151,500	1,241,996	15,518
Hyper- parameter	#α	0.2	0.2	0.2
	# β	0.1	0.1	0.1
	# K	2	2	3
	# K'	2	2	2
Settings	# L	1	1	2
	# L'	2	2	2

Table 1: Statistics and hyper-parameter settings for the three datasets.(α : local-level contrastive loss weight, β : contrastive loss weight, K: local collaborative aggregation depth, K': aggregation depth of item-item semantic graph construction, L: local semantic aggregation depth, L': global structural aggregation depth.)

Model	Book-Crossing		MovieLens-1M		Last.FM	
widdei	AUC	<i>F1</i>	AUC	<i>F1</i>	AUC	<i>F</i> 1
BPRMF	0.6583(-10.42%)	0.6117(-6.60%)	0.8920(-4.31%)	0.7921(-7.10%)	0.7563(-12.00%)	0.7010(-9.98%)
CKE	0.6759(-8.66%)	0.6235(-5.42%)	0.9065(-2.86%)	0.8024(-6.07%)	0.7471(-12.92%)	0.6740(-12.68%)
RippleNet	0.7211(-4.14%)	0.6472(-3.05%)	0.9190(-1.61%)	0.8422(-2.09%)	0.7762(-10.01%)	0.7025(-9.83%)
PER	0.6048(-15.77%)	0.5726(-10.51%)	0.7124(-22.27%)	0.6670(-19.61%)	0.6414(-23.49%)	0.6033(-19.75%)
KGCN	0.6841(-7.84%)	0.6313(-4.64%)	0.9090(-2.61%)	0.8366(-2.65%)	0.8027(-7.36%)	0.7086(-9.22%)
KGNN-LS	0.6762(-8.63%)	0.6314(-4.63%)	0.9140(-2.11%)	0.8410(-2.21%)	0.8052(-7.11%)	0.7224(-7.84%)
KGAT	0.7314(-3.11%)	0.6544(-2.33%)	0.9140(-2.11%)	0.8440(-1.91%)	0.8293(-4.70%)	0.7424(-5.84%)
KGIN	0.7273(-3.52%)	0.6614(-1.63%)	0.9190(-1.61%)	0.8441(-1.90%)	0.8486(-2.77%)	0.7602(-4.06%)
MCCLK	0.7625*	0.6777 *	0.9351*	0.8631*	0.8763*	0.8008*

Table 2: The result of AUC and F1 in CTR prediction. The best results are in **boldface** and the second best results are underlined. * denotes statistically significant improvement by unpaired two-sample *t*-test with p < 0.001.

OOM	OOM	0.9360	0.8629	0.8804	0.8010
-----	-----	--------	--------	--------	--------

Experiments

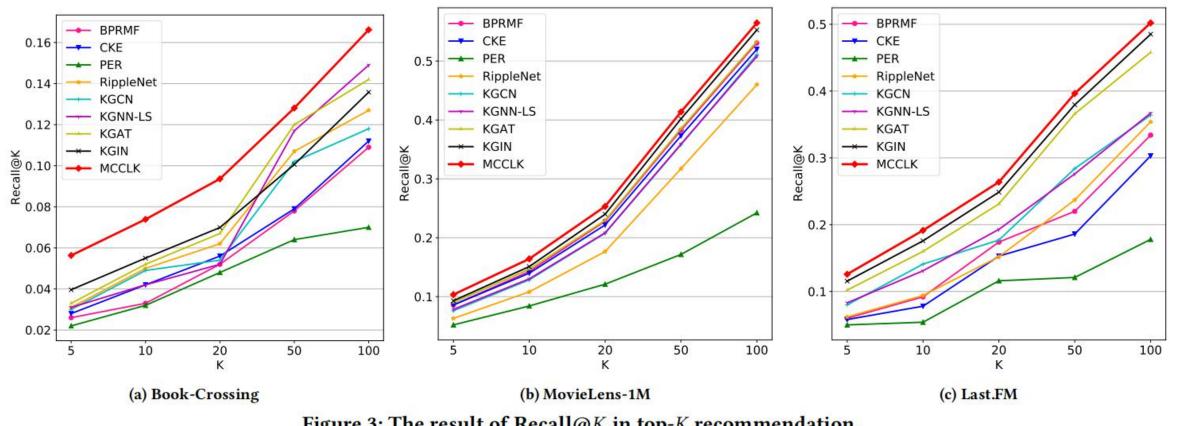


Figure 3: The result of Recall@K in top-K recommendation.

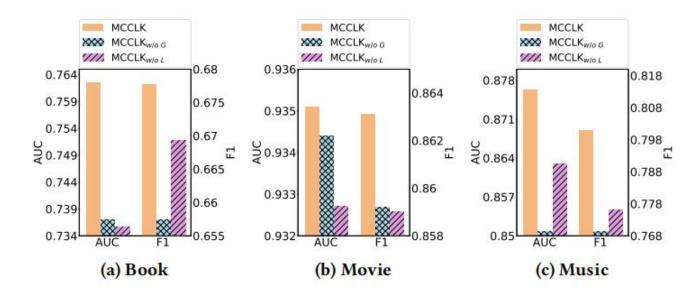


Figure 4: Effect of ablation study.

	Book		Movie		Music	
	Auc	F1	Auc	F1	Auc	F1
<i>L</i> =1	0.7602	0.6777	0.9350	0.8631	0.8711	0.7858
L =2	0.7601	0.6768	0.9347	0.8628	0.8742	0.7945
L=3	0.7591	0.6733	0.9345	0.8627	0.8726	0.7891
L=4	0.7583	0.6749	0.9343	0.8627	0.8720	0.7846

Table 3: Impact of aggregation depth in semantic view.

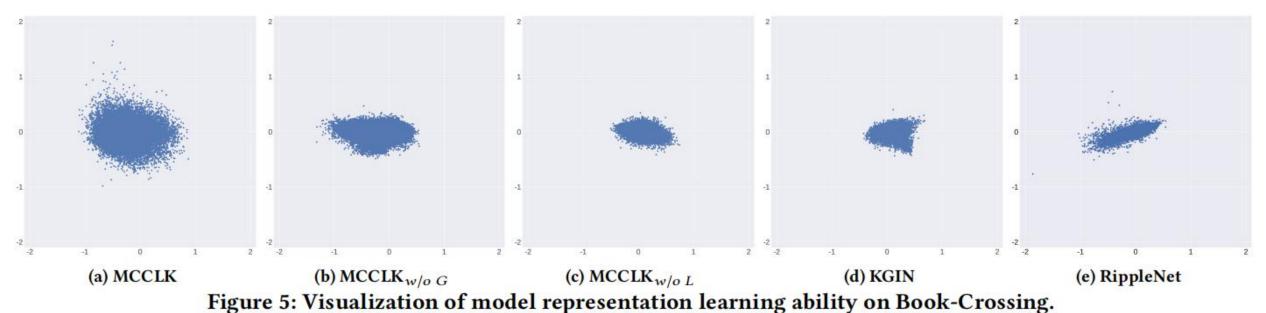
	Book		Movie		Music	
	Auc	F1	Auc	F1	Auc	F 1
<i>L</i> ′=1	0.7602	0.6776	0.9350	0.8628	0.8711	0.7858
L'=2	0.7625	0.6777	0.9351	0.8631	0.8763	0.8008
L'=3	0.7550	0.6719	0.9334	0.8589	0.8713	0.7899
<i>L</i> ′=4	0.7569	0.6680	0.9320	0.8574	0.8706	0.7841

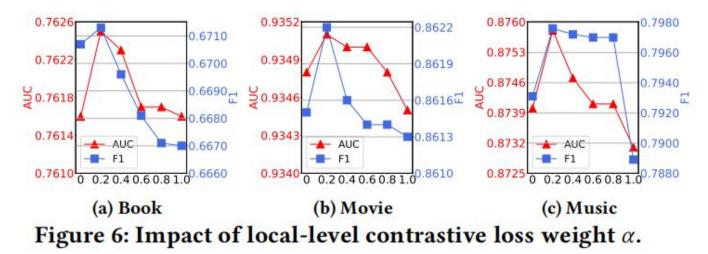
Table 4: Impact of aggregation depth in structural view.

	Book		Movie		Music	
	Auc	F1	Auc	F1	Auc	F1
β=1	0.7520	0.6649	0.9337	0.8593	0.8735	0.7938
$\beta = 0.1$	0.7625	0.6713	0.9351	0.8622	0.8758	0.7972
$\beta = 0.01$	0.7608	0.6689	0.9346	0.8610	0.8721	0.7913
β=0.001	0.7607	0.6675	0.9343	0.8604	0.8714	0.7856

Table 5: Impact of contrastive loss weight β .

Experiments





Thank you!